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Abstract

Introduction

Data visualization is the process by which data of any size or 
dimensionality is processed to produce an understandable set of 
data in a lower dimensionality, allowing it to be manipulated and 
understood more easily by people. The dimensionality reduction 
algorithms which we will focus on typically fall into two groups, 
those which attempt to maintain the global structure of the data 
and those which maintain local distances over global distance. In 
this paper, of the algorithms discussed, TriMap falls into the first 
category, while UMAP, LargeVis, and t-SNE fall into the second. The 
focus of our paper will be on the effectiveness and applications of 
each of these algorithms.

As technology has progress through the 21st century, the 
importance of the data it produces has become increasingly 
essential. With business entities paying and selling data sets and 
information with an ever-increasing fervor, technology has 
become dependent upon the data it produces in order to 
progress. Underlying this argument is the crux of why the field 
of data science has grown at such a quick rate, and that is the 
difficulty associated with the interpretation and understanding 
of the raw data produced by technology. Data and graph 
visualizations can provide a great depth of information with high 
density, making them crucial tools in conveying the underlying 
meaning of data to people.

Methodology

For our experiment,  we will be analyzing the runtime,  memory 
performance,  and aesthetic qualities of all four algorithms.  In 
order to measure runtime, we use thetimefunction1available in the 
bash shell, where the output ”real” time is measured.  To measure 
the memory usage of each algorithm over time, we will utilize 
thememoryprofiler2package available for Python 3 .For t-SNE, we 
will be using the original implementation distributed in the scikit-
learn package3for Python3.  For LargeVis, we also use its original 
implementation in C++4.  For UMAP, we use the distribution 
available on conda-forge,  which is a redistribution of the original 
algorithm’s GitHub5.  Finally,  we will be using the TriMap
implementation distributed on the Python Packed Index, which is 
sourced from the algorithms GitHubpage6.We will be running all 
tests on a system running RedHat Linux with an Intel(R) Xeon(R) 
CPU E5-2670 v3CPU running at 2.30GHz.  All the tests will be run 
using the default parameters for each respective algorithm. For 
our datasets, we will be using the MNIST Digits dataset7, a 
standard dataset used in a large variety of machine learning 
applications, composed of labeled images of handwritten 
numbers, and the Fashion MNISTdataset8, a more modern and 
difficult dataset based on labeled images of clothing items. For the 
analysis of our results, we will be measuring the runtime and 
memory usage of each algorithm.  We will  also  consider  the  
quality  of  the  produced  embedding,  considering  the  quality  of  
the  clustering,  which  is the tendency for similar points to group 
together, and the delineation between clusters, which is tendency 
for clusters to be separate from other clusters (ie.  not overlap).

To begin, we can see that all actual runtimes correspond with their 
respective theoretical runtimes, indicated in the bottom column of 
Table (1) for each algorithm.  This tells us that the experiment ran 
as expected by the authors of all algorithms and is an accurate 
predictor of which algorithm will execute the fastest.  We will 
analyze each individual algorithm according to their runtime, going 
from slowest to fastest.
With the serial version of t-SNE taking the longest out of all the 
algorithms, with a runtime of more than2 hours on both the MNIST 
Digits and Fashion MNIST data-sets, it does not provide a realistic 
runtime for data-sets over 100000.  Though the version of t-SNE 
used in this experiment was the slowest of all, there are various  
other  implementations  of  the  algorithm  that  significantly  
improve  its  runtime,  such  as  a  multi-core Barnes-Hut t-SNE, 
CUDA t-SNE, and anchored t-SNE, decreasing runtime by up to 700 
times. Looking at the memory used for t-SNE, we can see that for 
both data-sets, the memory usage holds at around2 gigabytes for 
most of the runtime, only dropping down to 1.5 gigabytes in the 
last fifth of the runtime. With this memory usage, t-SNE has the 
highest memory consumption of all algorithms tested, making it 
less useful in systems with a more limited capacity, though this, as 
before, can be mitigated by using other versions of the algorithm.  
Though this is true, it also has the most predictable and stable 
memory usage, as compared to the other algorithms. Looking at 
the quality of the embeddings, for the MNIST digits data, the data 
is clustered very well, with the  points  being  distributed  more  
widely  over  the  graph,  as  compared  to  the  other  embeddings,  
while  still maintaining clear delineation between clusters.  In the 
Fashion MNIST embeddings,  we see similar qualities, with slightly 
less delineation among clusters than in the Digits data-sets.  With 
the goal of mitigating the crowding-out problem of dimensional 
reduction was successful for t-SNE.
The next fastest algorithm for both data sets was LargeVis,  with a 
runtime of approximately 10 minutes. Though this algorithm did 
not provide the quickest results,  its runtime show that it can scale 
reasonably to larger data-sets. With a peak memory usage of 
around 2 gigabytes occurring at the very start of the algorithm, 
memory usage quickly drops down and normalizes to a consistent 
value slightly less than 1 gigabyte.  With a constant memory usage 
for much of its runtime, LargeVis is the second most stable 
algorithm according to memory usage. Finally, looking at the 
quality of the embeddings, we can see that for the MNIST Digits 
data-set, LargeVis provides very clear clustering among similar 
data points and a great amount of delineation between clusters.  
In the Fashion MNIST embedding, we also still see good clustering, 
however, with much less delineation between clusters, leading to a 
fair amount of overlap between data points.
UMAP was the second quickest algorithm tested, with its unique 
approach of applying topology mathematics to dimensional 
reduction resulting in a runtime of less than 6 minutes for both 
data-sets.  With this computational efficiency, UMAP can easily run 
on datasets over 70,000 data points in a realistic amount of time. 
With a peak memory usage over 2 gigabytes, UMAP has the highest 
peak memory usage out of all algorithms tested.  Furthermore, its 
memory usage is quite unstable, which several drops in usage 
paired with a series of sporadic climbs, only somewhat stabilizing 
at around halfway through its runtime. Finally, assessing the 
quality of the embeddings generated by UMAP, we can see that on 
the MNIST Digits dataset that its output is comparable to that of 
LargeVis, with high quality clustering and delineation.  Moving to 
the Fashion MNIST dataset,  we see that,  just like LargeVis,  the 
quality of the embedding has decreased, with significantly more 
overlap and less delineation between clusters.
TriMap was the fastest of all algorithms by a significant margin, 
with it outperforming all other algorithms in terms of runtime by at 
least 2 times and, when compared to t-SNE, up to 60 times.  With 
runtimes of around 2 minutes on both data-sets and a linear 
computational complexity, it can certainly scale far
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without any trouble. With  a  peak  memory  usage  of  about  1.2  
gigabytes,  TriMap is  also  the  most  memory  efficient  
algorithm, allowing it to scale up to larger datasets without the 
need for a significantly larger amount of memory.  However, the 
stability of its memory usage is among the worst of the 
algorithms tested, with it being comparable to that of UMAP 
with its frequent spikes in usage.
Finally, viewing the output embeddings, we can see that TriMap
produces embeddings in both the MNIST Digits and Fashion 
MNIST data-sets that are quite different from all the others.  This 
is most likely due to the fact that TriMap’s main focus is 
maintaining the global structure of the data,  as compared to 
LargeVis and t-SNE maintaining local structure and UMAP 
attempting to do find a medium between local and global 
structure.  That being said, TriMap produces embeddings for 
both data-sets which show clear clustering, with much less 
delineation between clusters than other algorithms and less 
overlap between data points.

Conclusion

Considering all the data and analysis, we can see that all of the 
algorithms tested have certain strengths and weaknesses.  With 
this, we can find a use case for all the algorithms. With its focus on 
solving the crowding-out problem, t-SNE is the best choice for 
reducing data-sets where a more uniformly distributed embedding 
is desired.  Furthermore, with the most stable memory usage 
among algorithms, it is well applied to use cases where predictable 
memory usage is favorable.  However, we recommend that the 
original serial version of t-SNE is not used, as it fails to scale to 
large data-sets, with its high memory consumption and high 
computational complexity.  Therefore it is recommended that if it is 
used, that one of its more optimized versions be used. Being based 
upon t-SNE with the same KNN tree construction, LargeVis shares 
with it certain characteristics, such as it more stable memory 
usage.  However,  LargeVis is significantly less computationally 
complex than t-SNE, allowing it to scale to data-sets with greater 
data points.  With the focus of LargeVis being to improve runtime 
as compared to t-SNE, it certainly delivers.  Therefore, we believe 
that LargeVis should be used for applications where stable 
memory usage, high scalability, and the preservation of the data’s 
local structure are desired. Moving  on  to  UMAP,  we  are  given  
faster  runtime  than  both  t-SNE  and  LargeVis,  but  at  the  cost  
of  less stable memory usage.  Providing similar embedding quality 
as compare to LargeVis, UMAP should be used as an alternative for 
LargeVis use cases when the stability of memory is not a factor, as 
it provides similar results in nearly half the time. Finally, we are left 
with the fastest and most memory efficient of all algorithms 
tested, that being TriMap. With its significantly lower runtimes and 
memory usage TriMap certainly outclasses all other tested 
algorithms in all tests.  However, TriMap is somewhat limited by its 
design specifications, as it is primarily geared towards maintaining 
the global structure of data, rather than local structure.  With 
relatively unstable memory usage, the predictability of TriMap is 
less than that of algorithms like LargeVis and t-SNE. Therefore, we 
believe that the best use cases for TriMap are whenever 
maintaining the global structure of data is the goal or the size of 
the data-set is to great for any algorithm to realistically process.
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Future Works

The extent of this survey is limited in certain aspects and can be 
improved in a few ways.  One of these aspects is the scale of 
testing.  Having only tested the algorithms on the MNIST Digits and 
Fashion MNIST datasets,  we would like to include more data sets 
with greater variety and explore how various factors,  such as 
original dimensionality and the number of data points,  affect 
algorithm metrics.  Some future aspects for analysis include the 
effect of algorithms’ hyper-parameter settings on the quality and 
metrics of embeddings and the improvements and drawbacks of 
algorithm reimplementations, such as those of t-SNE.
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