
A Survey on Recent Trends in High Dimensional Data Visualization
Alexander Kiefer, M. Khaledur Rahman

Indiana University Bloomington Department of Computer Science

Abstract

Introduction

Data visualization is the process by which data of any size or
dimensionality is processed to produce an understandable set of
data in a lower dimensionality, allowing it to be manipulated and
understood more easily by people. The dimensionality reduction
algorithms which we will focus on typically fall into two groups,
those which attempt to maintain the global structure of the data
and those which maintain local distances over global distance. In
this paper, of the algorithms discussed, TriMap falls into the first
category, while UMAP, LargeVis, and t-SNE fall into the second. The
focus of our paper will be on the effectiveness and applications of
each of these algorithms.

As technology has progress through the 21st century, the
importance of the data it produces has become increasingly
essential. With business entities paying and selling data sets and
information with an ever-increasing fervor, technology has
become dependent upon the data it produces in order to
progress. Underlying this argument is the crux of why the field
of data science has grown at such a quick rate, and that is the
difficulty associated with the interpretation and understanding
of the raw data produced by technology. Data and graph
visualizations can provide a great depth of information with high
density, making them crucial tools in conveying the underlying
meaning of data to people.

Methodology

For our experiment, we will be analyzing the runtime, memory
performance, and aesthetic qualities of all four algorithms. In
order to measure runtime, we use thetimefunction1available in the
bash shell, where the output ”real” time is measured. To measure
the memory usage of each algorithm over time, we will utilize
thememoryprofiler2package available for Python 3 .For t-SNE, we
will be using the original implementation distributed in the scikit-
learn package3for Python3. For LargeVis, we also use its original
implementation in C++4. For UMAP, we use the distribution
available on conda-forge, which is a redistribution of the original
algorithm’s GitHub5. Finally, we will be using the TriMap
implementation distributed on the Python Packed Index, which is
sourced from the algorithms GitHubpage6.We will be running all
tests on a system running RedHat Linux with an Intel(R) Xeon(R)
CPU E5-2670 v3CPU running at 2.30GHz. All the tests will be run
using the default parameters for each respective algorithm. For
our datasets, we will be using the MNIST Digits dataset7, a
standard dataset used in a large variety of machine learning
applications, composed of labeled images of handwritten
numbers, and the Fashion MNISTdataset8, a more modern and
difficult dataset based on labeled images of clothing items. For the
analysis of our results, we will be measuring the runtime and
memory usage of each algorithm. We will also consider the
quality of the produced embedding, considering the quality of
the clustering, which is the tendency for similar points to group
together, and the delineation between clusters, which is tendency
for clusters to be separate from other clusters (ie. not overlap).

To begin, we can see that all actual runtimes correspond with their
respective theoretical runtimes, indicated in the bottom column of
Table (1) for each algorithm. This tells us that the experiment ran
as expected by the authors of all algorithms and is an accurate
predictor of which algorithm will execute the fastest. We will
analyze each individual algorithm according to their runtime, going
from slowest to fastest.
With the serial version of t-SNE taking the longest out of all the
algorithms, with a runtime of more than2 hours on both the MNIST
Digits and Fashion MNIST data-sets, it does not provide a realistic
runtime for data-sets over 100000. Though the version of t-SNE
used in this experiment was the slowest of all, there are various
other implementations of the algorithm that significantly
improve its runtime, such as a multi-core Barnes-Hut t-SNE,
CUDA t-SNE, and anchored t-SNE, decreasing runtime by up to 700
times. Looking at the memory used for t-SNE, we can see that for
both data-sets, the memory usage holds at around2 gigabytes for
most of the runtime, only dropping down to 1.5 gigabytes in the
last fifth of the runtime. With this memory usage, t-SNE has the
highest memory consumption of all algorithms tested, making it
less useful in systems with a more limited capacity, though this, as
before, can be mitigated by using other versions of the algorithm.
Though this is true, it also has the most predictable and stable
memory usage, as compared to the other algorithms. Looking at
the quality of the embeddings, for the MNIST digits data, the data
is clustered very well, with the points being distributed more
widely over the graph, as compared to the other embeddings,
while still maintaining clear delineation between clusters. In the
Fashion MNIST embeddings, we see similar qualities, with slightly
less delineation among clusters than in the Digits data-sets. With
the goal of mitigating the crowding-out problem of dimensional
reduction was successful for t-SNE.
The next fastest algorithm for both data sets was LargeVis, with a
runtime of approximately 10 minutes. Though this algorithm did
not provide the quickest results, its runtime show that it can scale
reasonably to larger data-sets. With a peak memory usage of
around 2 gigabytes occurring at the very start of the algorithm,
memory usage quickly drops down and normalizes to a consistent
value slightly less than 1 gigabyte. With a constant memory usage
for much of its runtime, LargeVis is the second most stable
algorithm according to memory usage. Finally, looking at the
quality of the embeddings, we can see that for the MNIST Digits
data-set, LargeVis provides very clear clustering among similar
data points and a great amount of delineation between clusters.
In the Fashion MNIST embedding, we also still see good clustering,
however, with much less delineation between clusters, leading to a
fair amount of overlap between data points.
UMAP was the second quickest algorithm tested, with its unique
approach of applying topology mathematics to dimensional
reduction resulting in a runtime of less than 6 minutes for both
data-sets. With this computational efficiency, UMAP can easily run
on datasets over 70,000 data points in a realistic amount of time.
With a peak memory usage over 2 gigabytes, UMAP has the highest
peak memory usage out of all algorithms tested. Furthermore, its
memory usage is quite unstable, which several drops in usage
paired with a series of sporadic climbs, only somewhat stabilizing
at around halfway through its runtime. Finally, assessing the
quality of the embeddings generated by UMAP, we can see that on
the MNIST Digits dataset that its output is comparable to that of
LargeVis, with high quality clustering and delineation. Moving to
the Fashion MNIST dataset, we see that, just like LargeVis, the
quality of the embedding has decreased, with significantly more
overlap and less delineation between clusters.
TriMap was the fastest of all algorithms by a significant margin,
with it outperforming all other algorithms in terms of runtime by at
least 2 times and, when compared to t-SNE, up to 60 times. With
runtimes of around 2 minutes on both data-sets and a linear
computational complexity, it can certainly scale far

Results beyond the tested 70,000-member data-sets it was tested on
without any trouble. With a peak memory usage of about 1.2
gigabytes, TriMap is also the most memory efficient
algorithm, allowing it to scale up to larger datasets without the
need for a significantly larger amount of memory. However, the
stability of its memory usage is among the worst of the
algorithms tested, with it being comparable to that of UMAP
with its frequent spikes in usage.
Finally, viewing the output embeddings, we can see that TriMap
produces embeddings in both the MNIST Digits and Fashion
MNIST data-sets that are quite different from all the others. This
is most likely due to the fact that TriMap’s main focus is
maintaining the global structure of the data, as compared to
LargeVis and t-SNE maintaining local structure and UMAP
attempting to do find a medium between local and global
structure. That being said, TriMap produces embeddings for
both data-sets which show clear clustering, with much less
delineation between clusters than other algorithms and less
overlap between data points.

Conclusion

Considering all the data and analysis, we can see that all of the
algorithms tested have certain strengths and weaknesses. With
this, we can find a use case for all the algorithms. With its focus on
solving the crowding-out problem, t-SNE is the best choice for
reducing data-sets where a more uniformly distributed embedding
is desired. Furthermore, with the most stable memory usage
among algorithms, it is well applied to use cases where predictable
memory usage is favorable. However, we recommend that the
original serial version of t-SNE is not used, as it fails to scale to
large data-sets, with its high memory consumption and high
computational complexity. Therefore it is recommended that if it is
used, that one of its more optimized versions be used. Being based
upon t-SNE with the same KNN tree construction, LargeVis shares
with it certain characteristics, such as it more stable memory
usage. However, LargeVis is significantly less computationally
complex than t-SNE, allowing it to scale to data-sets with greater
data points. With the focus of LargeVis being to improve runtime
as compared to t-SNE, it certainly delivers. Therefore, we believe
that LargeVis should be used for applications where stable
memory usage, high scalability, and the preservation of the data’s
local structure are desired. Moving on to UMAP, we are given
faster runtime than both t-SNE and LargeVis, but at the cost
of less stable memory usage. Providing similar embedding quality
as compare to LargeVis, UMAP should be used as an alternative for
LargeVis use cases when the stability of memory is not a factor, as
it provides similar results in nearly half the time. Finally, we are left
with the fastest and most memory efficient of all algorithms
tested, that being TriMap. With its significantly lower runtimes and
memory usage TriMap certainly outclasses all other tested
algorithms in all tests. However, TriMap is somewhat limited by its
design specifications, as it is primarily geared towards maintaining
the global structure of data, rather than local structure. With
relatively unstable memory usage, the predictability of TriMap is
less than that of algorithms like LargeVis and t-SNE. Therefore, we
believe that the best use cases for TriMap are whenever
maintaining the global structure of data is the goal or the size of
the data-set is to great for any algorithm to realistically process.

t-SNE LargeVis

TriMapUMAP

MNIST Digits 2D Embeddings

LargeVis

TriMap
UMAP

t-SNE Fashion MNIST 2D Embeddings

Future Works

The extent of this survey is limited in certain aspects and can be
improved in a few ways. One of these aspects is the scale of
testing. Having only tested the algorithms on the MNIST Digits and
Fashion MNIST datasets, we would like to include more data sets
with greater variety and explore how various factors, such as
original dimensionality and the number of data points, affect
algorithm metrics. Some future aspects for analysis include the
effect of algorithms’ hyper-parameter settings on the quality and
metrics of embeddings and the improvements and drawbacks of
algorithm reimplementations, such as those of t-SNE.

Link to Paper

