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Abstract Data visualization is the process by which data of any size or dimensionality is processed to produce
an understandable set of data in a lower dimensionality, allowing it to be manipulated and understood more
easily by people. The goal of our paper is to survey the performance of current high-dimensional data visualiza-
tion techniques and quantify their strengths and weaknesses through relevant quantitative measures, including
runtime, memory usage, clustering quality, separation quality, global structure preservation, and local structure
preservation. To perform the analysis, we select a subset of state-of-the-art methods. Our work shows how the
selected algorithms produce embeddings with unique qualities that lend themselves towards certain tasks, and
how each of these algorithms are constrained by compute resources.

Keywords Data Visualization · Graph Visualization · Dimensionality Reduction

1 Introduction

According to the International Data Corporation (IDC), a leading market analytics company within the
information technology industry, it is projected that “the Global Datasphere will grow from 33 Zettabytes (ZB)
in 2018 to 175 ZB by 2025” (Rydning, 2018). With this significant increase in global information production come
a number of opportunities for businesses to make more informed decisions using mathematics, statistics, and
machine learning. However, with this increase in data, also come a number of challenges that must be addressed
in order to reap its possible benefits, chief among those being the difficulty associated with the interpretation
and understanding of raw data produced by technology. Data visualizations are capable of providing a great
depth of information with high density, making them crucial tools in conveying the underlying meaning of data
to people.

Data visualization is the process by which data of any size or dimensionality is processed to produce an
understandable set of data in a lower dimensionality, allowing it to be manipulated and understood more easily
by people. The typical dimension for visualization is 2D or 3D in picture/image format. Beyond 2D or 3D, the
visualization is not easily perceivable by human beings. Good quality visualizations allow us to extract a wealth
of meaningful information at first hand, as the famous saying goes“a picture is worth a thousand words” (Pinsky
and Wipf, 2000).

There are a handful number of dimensionality reduction techniques that help us reduce the high dimensional
data to 2D or 3D data for visualization. The dimensionality reduction algorithms which we will focus on
typically fall into two groups, those which attempt to maintain the global structure of the data and those
which maintain local distances over global distance (McInnes et al., 2018). In this paper, of the algorithms
discussed, TriMap (Amid and Warmuth, 2019) falls into the first category, while UMAP (McInnes et al., 2018),
LargeVis (Tang et al., 2016), and t-SNE (Maaten and Hinton, 2008) fall into the second. Other research fields,
such as computational biology and graph embedding, are being significantly benefited from the visualization
of high-dimensional data by using these methods (Becht et al., 2019; Kobak and Berens, 2019; Tsitsulin et al.,
2018; Rahman et al., 2020b). The focus of our study will be on the effectiveness and applications of each of
these algorithms for high-dimensional data visualization.

The dimensionality reduction techniques mainly work on the high-dimensional numeric data. However, if
we have graphs/networks, we cannot apply them directly though they are also considered as high-dimensional
structured datasets (Erdös et al., 1965). Thus, in close association with the previous process, graph visualization
is a method by which data of low dimensionality (2D or 3D) is used to generate visual interpretations of
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Fig. (1) Data visualization hierarchy

graphs or networks, making the relationships within the data more easily understood by users. These types
of datasets are structured and we can extract valuable information from the visualizations. In this survey, we
focus on analyzing the runtimes, memory consumption and the quality of layouts for some general purpose
graph visualization techniques. Force-directed techniques are widely used for graph visualization. Thus, we will
primarily focus on some state-of-the-art force-directed methods for large-scale graph visualization along with a
dimensionality reduction technique for graph visualization.

The difference between the high-dimensional data point and graph visualization is that we only show the
positions of the data points for the former whereas edges of a graph are also drawn in 2D/3D space for the latter.
Though there are multiple survey papers in the literature for data visualization, an analytical study showing
the performance comparison of existing methods is missing (Liu et al., 2014; Chen et al., 2019; Van Der Maaten
et al., 2009). In this survey paper, we fill this gap by analyzing runtimes, memory consumption, and aesthetic
quality scores of some representative visualization methods from the two categories. To make a fair comparison,
we run all the methods in the same server machine, and carefully analyze the results. We summarize the main
focus of our contributions as follows:

– We select a set of representative state-of-the-art visualization methods based on the popularity, and present
the underlying methods in a concise but understandable format. Our survey covers two fundamental visu-
alization areas: (i) vector data, and (ii) graphs or networks, which provide a global picture of the respective
visualization field.

– We compare all the methods in terms of runtimes, memory consumption, and quality scores to analyze the
advantage and disadvantage of using a respective method.

– Finally, we analyze the results to provide recommendations to users or researchers so that they can get an
idea regarding which method to use for a given set of resources.

2 Preliminaries

We represent high-dimensional vector data by X ∈ Rn×d, where n is the number of entries and d is the
dimension of each data entry. Hence, xi represents d-dimensional vector of i-th entry of X. We represent the
lower dimensional projection of X by Y ∈ Rn×2, where yi represents (x, y) coordinates of i-th entry in 2D space.
Let G(V,E) be a graph, where V is the set of vertices and E is the set of edges. Unless otherwise mentioned,
we use the same definition of Y to represent the layout of graphs in 2D space.

Asymmetric high dimensional data points belong to vector data category when they have no explicit struc-
tural connection such as images, words, etc. On the other hand, data points having structural information
belong to Network category. Without loss of generality, graph and network bear the same meaning in our study.
Thus, we use these two terms interchangeably.

3 High Dimensional Data Visualization

Data can come from a variety of sources which can be structured or unstructured. Different methods have
been proposed in the literature to visualize both types of data. In this survey, we discuss visualization methods
focusing on two branches: (i) vector data, and (ii) graph data. We select a few methods to analyze both types
of visualization techniques. Fig. 1 shows a hierarchy of our selected data visualization techniques.
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3.1 Vector Data Visualization

Generally, dimensionality reduction techniques are used to project high dimensional data points to lower
dimensions. This lower dimensional projection captures the intrinsic properties of the vector data as much
as possible for readable visualization. Similar data points are clustered together whereas dissimilar points are
placed apart. We discuss some of the state-of-the-art methods as follows.

3.1.1 t-SNE (Maaten and Hinton, 2008)

For high-dimensional vector data visualization, t-SNE is a pioneering tool and a progenitor of most modern
dimensionality reduction tools. The algorithm significantly improved upon ones prior to it by allowing for much
higher dimensionality in data sets and, overall, better visualization by reducing the tendency of points to cluster
at the center of the graph, which is often referred to as the crowding-out problem. By employing a variation
of Stochastic Neighbor Embedding (Hinton and Roweis, 2003), t-SNE is significantly easier to optimize, as
compared to prior methods, increasing both the efficiency and quality of graphs, with a computational complexity
modeled by O(N2).

To give a very general overview of t-SNE, high-dimensional data sets are converted into a pairwise similarities
matrix to allow for construction of accurate and meaningful visualizations. Stochastic neighbor embedding
begins by converting the high-dimensional Euclidean distances within the input data into a set of conditional
probabilities, which represents the similarity between the data points. The conditional probability, pj|i, can be
modeled by Eqn. 1 as follows.

pj|i =
exp(−||xi − xj ||2/2σ2

i )∑
k 6=i exp(−||xk − xl||

2
/2σ2

i )
(1)

Where the similarity between two data points xi and xj is equal to the conditional probability that xi is
the neighbor of xj , given that neighbors are picked under a Gaussian centered at xi in proportion to their
probability density. σi is the variance of the Gaussian on xi. The values of pi|i is set to zero in order to constrain
the model to pairwise similarities.

Next, to find the low-dimensional results, yi and yj of xi and xj another conditional probability, qj|i is

calculated. However, in this instance, the variance of the Gaussian is set to 1√
2
. Thus, the similarity between

the mapped points yi and yj is modeled by

qj|i =
exp(−||yi − yj ||2)∑
k 6=i exp(−||yk − yl||

2
)

(2)

If the values of qj|i and pj|i are equal, then the mapped points yi and yj correctly model the original data
points xi and xj . However, to improve efficiency, SNE allows for a small amount of variance between qj|i and
pj|i, which it optimizes by minimizing a Kullback-Leibler divergence between a joint probability distribution, P ,
in high-dimensional space and a joint probability distribution, Q, in low-dimensional space. The cost function
of this method is given by the model

C = KL(P ||Q) =
∑
i

∑
j

pj|ilog
pj|i

qj|i
(3)

Where Pi is the probability distribution, given data point xi, over all other data points and Qi is the same,
but given data point yi. Due to the unsymmetrical nature of the Kullback-Leibler divergence, if the mapped
points used to represent nearby data-points are far apart, they will have a higher cost function associated with
them. However, if the mapped points used to represent far apart data-points are close together, they will have
a lower cost function associated with them.

The final parameter that must be set is the variance σi of the Gaussian. It is beneficial to pick a smaller
value for σi when the region is more dense, and a larger one when it is more sparse. The value σi is found
through a binary search with perplexity Pi defined by the user. One of the superior qualities of symmetric SNE,
as compared to asymmetric SNE, is that the gradient function (Cook et al., 2007) is much simpler, decreasing
computation time.

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj) (4)
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3.1.2 LargeVis (Tang et al., 2016)

Developed in 2016, LargeVis aims to solve the problem of the high computational cost associated with
dimensionality reduction problem such as t-SNE. To give a very general overview of the LargeVis method, first,
an accurately approximated k-nearest neighbor graph is generated from the input data. After this, the graph is
then projected in a low dimensional space in a layout which is easily readable by the viewers. By using a principle
probabilistic model, the dimensional reduction of the data can be optimized using an asynchronous stochastic
gradient descent with a linear time complexity. Some advantages that LargeVis has over other methods are
higher stability of its hyper-parameters over a large variety of datasets and greater efficiency and effectiveness
as compared to t-SNE, with an overall computational complexity of O(dsN), where d is the dimension of the
low dimensional space, s is the number of negative samples, and N is the number of points in the dataset.

One of the primary challenges faced with dimensionality reductions is the construction of the k-nearest
neighbor graph, which from now on will be referred to as the k-NN graph. In t-SNE, vantage point trees
(Yianilos, 1993) are used to construct the k-NN graph. Though this is an effective method for relatively large
data sets, the performance greatly reduces as the dimensionality of the data increases.

The computational complexity of an exact k-NN can be modeled by the formula O(N2d), with N being the
total number of data points and d the number of dimensions. This is considered very complex, so it is reduced
using techniques for in-exact approximation such as space-partitioning trees (Charikar, 2002; Datar et al., 2004;
Gionis et al., 1999), and nearest neighbor exploration (Dong et al., 2011). By partitioning the space, the data can
be more easily organized into tree-structures while preserving the general structure of the data, with random
projection trees (Datar et al., 2004) being used due to their high efficiency in nearest neighbor exploration.
Locality sensitive hashing is then used to organize the data into “buckets” which contain data considered to be
similar. Finally, the k-NN graph is refined and improved over a certain amount of iterations.

Going into greater detail, LargeVis begins by calculating the weights of the edges in the k-NN graph using
the same method as t-SNE, modeled by Eqn. 1. The graph is then made symmetric by finding the weight
between all inputs, modeled by

wij =
pi|j + pj|i

2N
(5)

It is at this point that LargeVis begins to use a unique probabilistic model for visualizing the k-NN graph.
With a goal of maintaining similarity between vertices in low dimensional space, the probability of observing a
binary edge eij = 1 from a pair of vertices (vi, vj) is modeled as follows,

P (eij = 1) = f(||~yi − ~yj ||) (6)

where ~yi is the low dimensional embedding of vi and ~yj of vj . Here, f() is any probabilistic function calculated
with respect to the distance between the embedded vertices. The type of probabilistic function used can be
varied to optimize results based on the structure of the data. Generalizing this equation for weighted edges, the
probability of a weighted edge eij = wij can be modeled by

P (eij = wij) = P (eij = 1)wij (7)

Given these, the probability of the weighted graph, G = (V,E), is modelled as

O =
∏

(i,j)εE

p(eij = 1)wij

∏
(i,j)εĒ

(1− p(eij = 1))γ ∝
∑

(i,j)εE

wij log p(eij = 1) +
∑

(i,j)εĒ

γ log (1− p(eij = 1)) (8)

where Ē is the set of unobserved vertex pairs and γ the collective weight of the negative edges. The first
component of this formula shows the probability of observed edges, which when maximized, clusters similar
points together in the low dimensional space. The second component models the probability of negative edges
which, when maximized, ensures differing points stay far apart in the low dimensional space.

However, maximizing both of these equations is inefficient and computationally difficult. In order to mitigate
this, negative edges are randomly sampled using a noisy distribution Pn(j), with every vertex i having randomly
chosen vertices j, with (i, j) representing the negative edges. With a noisy distribution of Pn(j) ∝ d0.75

j , where
dj is the degree of the vertex j, and M being the number of negative samples per positive edge, a more easily
computable objective function can be found where

O =
∑

(i,j)εE

wij(log p(eij = 1) +
∑
k=1

Ejk∼Pn(j)γ log (1− p(eijk = 1))) (9)

Finally, Eqn. 9 can be optimized using an asynchronous stochastic gradient descent, accelerating training
and improving performance on sparse data sets. An innovative feature of LargeVis, in order to maintain the
norms of the gradient, edges are randomly sampled (Tang et al., 2015) with a probability proportional to their
weights and then used as binary edges in the stochastic gradient descent.
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3.1.3 UMAP (McInnes et al., 2018)

Uniform Manifold Approximation and Projection (UMAP) is a manifold learning algorithm used for the
dimensionality reduction problem. The algorithm is rooted in Riemannian geometry and algebraic topology
(May, 1992), allowing it to scale to much larger datasets, as compared to other algorithms, such as t-SNE.
UMAP is commonly used in a variety of fields, including bioinformatics (Bagger et al., 2016; Becht et al., 2018;
Diaz-Papkovich et al., 2018), material science (Fuhrimann et al., 2018; Li et al., 2018), and machine learning
(Escolano et al., 2018; Blomqvist et al., 2018).

To give a general overview of the UMAP algorithm, local manifold approximations are combined to find
their local fuzzy simplicial set representations (Goerss and Jardine, 1999). These representations are then used
to construct a topological representation of the high dimensional data. Using this topological representation,
a low dimensional representation of the data can be inferred. UMAP then optimizes the layout of the data
representation in the low dimensional space in order to minimize the cross-entropy between the two topological
representations.

Going into greater detail, we will discuss the specific computations in the UMAP algorithm. Being based
heavily upon an in depth mathematical analysis of the problem, the motivation for certain steps in the algorithm
can be found in Section 2 of (McInnes et al., 2018).

To begin, UMAP constructs a weighted k-nearest neighbors graphs using an input high-dimensional data-set
X = {xi, ..., xn} and a dissimilarity measure m : X ×X → R≥0. Using a given hyper-parameter k, the set of
k-nearest neighbors {xi1, ..., xik} is calculated according to the metric m using nearest neighbor descent (Dong
et al., 2011).
Next, for every xi, pi and σi are calculated such that

pi = min{m(xi, xij)|1 ≤ j ≤ k,m(xi, xij) > 0} (10)

and
k∑
j=1

exp(
−max(0,m(xi, xij)− pi)

σi
) = log2(k) (11)

To construct the weighted-directed graph Ḡ = (V,E,w), we use V = X, E = {(xi, xij)|1 ≤ j ≤ k, 1 ≤ i ≤ N},
and

w((xi, xij)) = exp(
−max(0,m(xi, xij)− pi)

σi
). (12)

Finally, the symmetric adjacency matrix B of the undirected, weighted graph output for UMAP, G, can be
defined by

B = A+A> −A ◦A>, (13)

where ◦ is the pointwise product and A is the weighted adjacency matrix of Ḡ
To calculate the graph layout for G, UMAP utilizes a force directed graph layout algorithm in the desired

low dimensional space which, using a set of attractive forces on edges and a set of repulsive forces on vertices,
converges the graph and makes it aesthetically pleasing. With hyper-parameters of a and b, the attractive force
between two vertices i and j at coordinates yi and yj is calculated as

−2ab||yi − yj ||2(b−1)
2

1 + ||yi − yj ||22
w((xi, xj))(yi − yj) (14)

In order to reduce the computational cost, edges are sampled from every vertex that has an attractive force
applied to it and then one is repulsed. The repulsive force is calculated as

b

(ε+ ||yi − yj ||22)(1 + ||yi − yj ||22)
(1− w((xi, xj)))(yi − yj)), (15)

where ε is an arbitrarily small number to prevent division by 0. By default, it is set to 0.001. G is initialized to
a spectral layout which allows for quicker convergence and improved stability of the algorithm.

3.1.4 TriMap (Amid and Warmuth, 2019)

The TriMap method is one of the most recent tool for dimensionality reduction. With the majority of di-
mensionality reduction techniques aiming to preserve local neighborhood structure, TriMap focuses precisely
upon providing an algorithm which preserves the global structure of the data. One of the major differences
in the implementation of the TriMap method is the use of triplets to create an embedding, as compared to
the more common pairwise method used by other algorithms. Here, they are represented as (i, j, k), with the
interpretation being that point i is closer to point j than point k.
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To give a general overview of the TriMap algorithm, using a low-dimensional representation of the data
created using the PCA algorithm (Hotelling, 1933), triplets from the high dimensional representation are used
to refine the quality of the low dimensional representation.

Going into greater depth, TriMap begins by sampling a subset of triplets τ = {(i, j, k)} and giving each a
weight ωijk ≥ 0, where large values signify that (i, k) are more distant than (i, j). Using this, the cost function
for a triplet (i, j, k) is defined as

lijk := ωijk
s(yi, yk)

s(yi, yj) + s(yi, yk)
, where s(yi, yj) = (1 + |yi − yj ||2)−1 (16)

The unnormalized weight of a triplet in the high-dimensional space can be defined as

ω̃ijk = exp(D2
ik −D2

ij) ≤ 0 (17)

where Dij and Dik are the distances between points xi, xj and xi, xk in the high dimensional space, respectively.
To find the euclidean distance, it is scaled by

D2
ij =

||xi − xj ||2

σij
(18)

where σij is the product of σi and σj . σi is the average Euclidean distance between xi and the set of its nearest-
neighbors, up to 6-th neighbors. In this way, depending upon the density of the data, σij will dynamically
change the scaling.

Finally, in order to improve the local accuracy of the algorithm, the previously calculated weights ω̃ijk
undergo a γ-scaled log-transformation, accentuating smaller weights, and pushing all other points farther away.
Therefore, the final weight is defined as follows.

ωijk = ζγ(
ω̃ijk
W

+ δ) , where ζγ(u) := log 1 + γu (19)

where W = max(i′,j′,k′)ετ ω̃i′j′k′ , γ is a small constant, and δ > 0 is the scaling factor. Both δ and γ can be set
by the user.

Using all of this information, the embedding can be constructed. Considering a subset of all possible triplets
(i, j, k), where j is one of i’s nearest neighbors and k is one of i’s most distant neighbors, we now define our
hyper-parameters. Where m = 10 is the number of nearest neighbors for each point and m′ = 5 is the number
of triplets sampled for each nearest neighbor. This leaves us with 50 nearest neighbor triplets per point. In
order to account for noise in the data and provide a more robust model, we allow for r = 5 randomly sampled,
and ordered, triplets to be inserted, making the final count of triplets per point m×m′ + r = 55. Utilizing the
ANNOY library for the construction of the approximate nearest neighbors tree, the initial embedding is set to
the PCA embedding and scaled to improve convergence. By doing this, the algorithm provides superior global
structure preservation in the embedding. The final cost function for the Trimap algorithm is represented as

l TriMap =
∑

(i,j,k)ετ

lijk (20)

3.2 Graph Visualization

Graphs are considered as high-dimensional data (Erdös et al., 1965). Thus, visualization of graphs is similar
to vector data provided that the graph has a given structural information i.e., connectivity of vertices by edges.
There are various methods in the literature for graph visualization. We select a few of them for our study based
on the popularity, runtime and quality of the visualizations. We discuss our selected methods as follows.

3.2.1 OpenOrd (Martin et al., 2011)

The OpenOrd method is a high-performance tool for graph visualization that can generate layout of graphs
having millions of vertices. This method employs the spring-electrical model in its underlying optimization
function. It uses a multi-level approach for graph layout generation. At each level, a force-directed approach is
used to generate layout at each step. A graph is coarsened to reduce the size. In the coarsening step, vertices
are merged using the average link clustering approach. When it reaches to the coarsest level, coarsened steps
are reversed back to gain the final layout of the graph. Prolongation step and layout generation are performed
at tandem so that it consumes less time. It optimizes the following objective function using simulated annealing
heuristic approach.
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minx1,...,xn

∑
i

(
∑
j

wijE(xi, xj)
2 +Dxi) (21)

In Eqn. 21, E(xi, xj) represents the attractive force between vertices i and j using Euclidean distance, Dxi

represents the approximated repulsive force of vertex i, and wij represents the weight of the edge between
vertices i and j.

OpenOrd has been implemented using parallel computing techniques. It also supports several other options
e.g., edge cutting is to visualize the densely connected graph. OpenOrd has a few drawbacks which are listed
below:

– One of the drawbacks of this approach is that it uses an adjacency matrix for graph representation. Thus,
it easily reaches the available memory limit for large graphs.

– Parallel version has another drawback, for multiple cores, several runs results in different layouts which do
not preserve consistency as required in scientific computing.

3.2.2 ForceAtlas2 (Jacomy et al., 2014)

The ForceAtlas2 (Jacomy et al., 2014) method is an engineering advancement that integrates several force-
directed methods in Gephi software (Bastian et al., 2009) for general purpose network visualization. Authors
represent attractive force Fa and repulsive force Fr of two vertices i and j in terms of Euclidean distance as
follows: Fa ∝ Ea(i, j), and Fr ∝ E−r(i, j′), where En(i, j) is defined as follows.

En(i, j) = {(ix − jx)2 + (iy − jy)2}1/n (22)

where, ix and iy are (x, y)-coordinates of vertex i. We can compute repulsive force of vertex i with respect
to vertex j′ similar to Eqn. 22. Now, changing the value of (a, r), we can generate different force-directed
models (Hu, 2005; Kobourov, 2012). A repulsive force is computed when two vertices are not connected by an
edge. For scale-free networks or graphs having low average degree, this computation can be asymptotically O(n).
Thus, the repulsive force computation is the most time-consuming part of force-directed models. In ForceAtlas2,
the authors apply quadtree-based repulsive force approximation technique that reduce the overall runtime of
the model (Barnes and Hut, 1986). Specifically, this technique reduces the runtime of repulsive computation
from O(n) to O(log n). Though ForceAtlas2 supports multi-threading, its Java-based implementation consumes
high amount of memory and is not very effective to utilize the memory bandwidth optimally. Nevertheless, it
generates readable layout for both connected and disconnected graphs. Later, this model has been implemented
in GPU to generate layout of graphs having millions of vertices (Brinkmann et al., 2017).

3.2.3 tsNET (Kruiger et al., 2017)

The tsNET (Kruiger et al., 2017) is a version of the t-SNE (Maaten and Hinton, 2008) which has been
formulated for graph layout problem. The attractive force is computed using a similar approach to t-SNE. First,
the graph theoretic shortest path distance is calculated for all vertices. Then, the joint probability between the
adjacent vertices is calculated using the t-SNE approach. For repulsive force, the logarithmic difference between
non-adjacent vertices is computed for all vertices and then added to the average of it optimization function.
The optimization function of tsNET is given below:

C = λaCKL + λc
1

N

∑
i,j∈V

‖ yi − yj ‖ +λr
1

N

∑
i,j∈V

log(||yi − yj ||+ ε) (23)

This method can generate good quality graph visualization. However, it has some drawbacks such as this
method runs slower compared to other state-of-the-art graph visualization methods. Thus, it cannot generate
layouts of large graphs. Since, choosing a good value of perplexity parameter is difficult in t-SNE (Wattenberg
et al., 2016), the problem remains the same for tsNET. Sometimes, this method does not converge which results
in an unreadable layout.

3.2.4 BatchLayout (Rahman et al., 2020a)

BatchLayout is a very recent method that focuses on minimizing runtime and memory consumption while
maintaining a good quality of the layout (Rahman et al., 2020a). It employs the popular Fruchterman-Reingold
(Fruchterman and Reingold, 1991) spring-electrical models to preserve the quality of the layout, quad-tree
data structure to reduce the runtime to O(n log n), and a mini-batch approach to obtain a faster parallel
implementation. The original spring-electrical model has a sequential dependency similar to Stochastic Gradient
Descent (SGD) which obstructs a massively parallel implementation. In the mini-batch approach, the attractive
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Fig. (2) Force computations in BatchLayout: (a) The original graph where different batches are shown by a
gray-dotted area. (b) Each batch contains two vertices and attractive and repulsive forces within a batch are
computed in parallel and then coordinates are updated. V and V ′ represents vertex sets of before and after
updating coordinates, respectively. ‘A’ and ‘R’ in each cell of the matrix represent attractive and repulsive force,
respectively.

and repulsive forces are calculated for a subset of vertices in parallel. Then, the corresponding coordinates are
updated based on the combined forces (see Fig. 2). In Fig. 2, there are three mini-batches such as {0, 1}, {2, 3},
and {4, 5}. We can compute the forces of verteces 0 and 1 in parallel as they are in the same batch. We do not
consider updated coordinates of vertices 0 and 1 while computing forces with respect to these vertices. Then, we
move to the next minibatch and compute forces of vertices 2 and 3. Now, we consider the updated coordinates
of the previous batches i.e., {0, 1}. Since, the updated coordinates of these vertices are not considered while
computing forces in a batch, the convergences of this approach takes higher iterations to converge. However,
the parallel computing approach makes it significantly faster that easily compensate to generate good quality
layout. Authors empirically show that the scalable parallel implementation of BatchLayout can catch the total
number of converging iterations within a very short time compared to the sequential approach. In summary,
the BatchLayout method can generate readable quality layout very fast compared to other methods.

3.2.5 Other Graph Visualization Methods

Over the years, researchers have put efforts to reduce the runtime in force-directed models. Recently, a
random sampling based repulsive force calculations approach has been introduced (Gove, 2019). Authors call it
the Random Vertex Sampling (RVS) approach. The approach of this algorithm can be summarized as follows:
select a subset of vertices |V |φ to update the attractive force. Then, select |V |φ−1 randomly selected vertices
for repulsive force calculations. Thus, the total time complexity will be O(|V |φ.|V |φ−1) = O(|V |), where, φ is
a real number such that 0 < φ < 1. Authors proposed to update the force from left to right based on a sliding
window approach so that each vertex gets a chance to be updated by repulsive forces. This method has another
variation which runs T − k iterations using random sampling approach and then runs last k iterations using
Barnes-Hut approach which produce good layout. Authors have tested their approach for graphs up to 100K
vertices. Though this method introduces a fast sequential approach, it has some possible drawbacks which have
not been considered in the model such as the randomly selected vertices can be neighbors (false negative) for
repulsive force computation, and the suggested value of φ to be 3

4 based on experiments, though graphs with a
higher number of vertices will suffer as a result. It is obvious that for a small set of randomly selected vertices,
the runtime for repulsive force calculations will always be low. However, it is also possible that the layout of
such graph may not be readable. In the experimental results of the paper, the benchmark graph shows such
negative results where RVS approach performs worse than Barnes-Hut approach.

There are various graph visualization softwares that can employ different graph visualization algorithms
based on the users’ expectation such as Gephi (Bastian et al., 2009), GraphVis (Ellson et al., 2001), OGBD (Chi-
mani et al., 2013), etc. These tools provide either graphical user interface or command line interface while sup-
porting multi-core computations. They provide users a great advantage such as flexibility of choosing a graph
visualization algorithm.
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4 Experiment

4.1 Experiment Setup

For our experiment, we analyze the runtime, memory performance, and aesthetic qualities of all four algo-
rithms. In order to measure runtime, we use the time function 1 available in the bash shell, where the output
“real” time is measured. To measure the memory usage of each algorithm over time, we will utilize the mem-
ory profiler 2 package available for Python 3 .

For t-SNE, we use the original implementation distributed in the scikit-learn package 3 for Python 3. For
LargeVis, we also use its original implementation in C++ 4. For UMAP, we use the distribution available on
conda-forge, which is a redistribution of the original algorithm’s GitHub 5. Finally, we use the TriMap imple-
mentation distributed on the Python Packed Index, which is sourced from the algorithms GitHub page 6.

We have run all tests on a system running RedHat Linux with an Intel(R) Xeon(R) CPU E5-2670 v3 CPU
running at 2.30GHz. All of the tests have been run using the default parameters for each respective algorithm.
For our vector data visualization experiments, we use the MNIST Digits dataset 7, a standard dataset used in
a large variety of machine learning applications, composed of labeled images of handwritten numbers, and the
Fashion MNIST dataset 8, a more modern and difficult dataset based on labeled images of clothing items.

For the analysis of our results, we measure the runtime and memory usage of each algorithm. We will also
consider the quality of the produced embedding, analyzing the quality of the clustering, which is the tendency
for similar points to group together, the delineation between clusters, which is tendency for clusters to be
separate from other clusters (i.e., not overlap), and the retention of the local and global structure of the em-
bedded data. Our quantitative measures9 for these qualities are their Davies-Bouldin and Silhouette scores, and
trustworthiness and global scores for their structures.

The Davies-Bouldin score (Davies and Bouldin, 1979) measures the quality of the clustering through the
average ratio of within-cluster distances to between-cluster distances, with the best score being 0. The similarity
between clusters Rij is defined as

Rij =
si + sj
dij

(24)

where si and sj are the average distance between each point of cluster i and j and the centroid, or diameter,
of that cluster, and dij is the distance between cluster centroids i and j. The final score is then calculated as

DB =
1

k

k∑
i=1

max
i6=j

Rij (25)

with k being the total number of clusters.

The silhouette score (Rousseeuw, 1987) measures the quality of the delineation between each point in each
cluster on average, where positive values indicate superior delineation of values between clusters, values near 0
indicate overlapping clusters, and more negative values indicate points mapped to incorrect clusters. The score
for one sample is calculated as

s =
b− a

max(a, b)
(26)

where, a is the average distance between the current point and all other points in the same class and b is the
average distance between the current point and all other points in the next nearest cluster. The overall score
for an embedding containing multiple samples is calculated as

SC =

∑
i = 1ks(i)

n
(27)

where, i is the current sample and n is the total number of samples.

1https://ss64.com/bash/time.html
2https://github.com/pythonprofilers/memory_profiler
3https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
4https://github.com/lferry007/LargeVis
5https://github.com/lmcinnes/umap
6https://github.com/eamid/trimap
7http://yann.lecun.com/exdb/mnist/
8https://github.com/zalandoresearch/fashion-mnist
9https://github.com/alexk101/dimensionality_reduction_measures

https://ss64.com/bash/time.html
https://github.com/pythonprofilers/memory_profiler
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://github.com/lferry007/LargeVis
https://github.com/lmcinnes/umap
https://github.com/eamid/trimap
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/alexk101/dimensionality_reduction_measures
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The trustworthiness score is a measure that expresses how well the local structure of the data has been
preserved by comparing the original dataset to the embedded dataset, where the score ranges from 0 to 1, 1
being the best. The measure is calculated as

T (k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
j∈Nk

i

max(0, (r(i, j)− k)) (28)

where for every sample i up to the total number of samples n,N k
i are its k-nearest neighbors in the embedding

and each sample j is the r(i, j)-th nearest neighbor in the original space.

The global score, defined within the implementation of TriMap as a quality measure, is the minimum
reconstruction error of the original dataset through the use of a linear inverse map derived from PCA, where
the score ranges from 0 to 1, 1 being the best. With n data points such that xiεRmni=1, XεRm×n the ith column
of the original dataset matrix corresponding to xi, and Y εRd×n the embedded matrix corresponding to yiεRd

n
i=1,

the minimum reconstruction error (mre) for a given embedding is calculated as

ε(Y |X) := minAεRm×n ||X −AY ||2F (29)

where, || � ||F is the Frobenius norm of the matrix. Using this mre, the global score is then formulated as

GS(Y |X) := exp(−ε(Y |X)− εpca
εpca

)ε[0, 1] (30)

where εpca := ε(Ypca|X), which is the ideal mre produced on the X dataset using the PCA embedding
method.

We use the implementation of these measures found in the scikit-learn package, except for the global score,
which is a part of the TriMap method implementation and can be found on the paper’s respective Github
page.10,11,12

4.2 Results

4.3 Comparison of High-Dimensional Data Visualization Tools

Table (1) Actual (minutes:seconds) and theoretical runtimes for reducing the dimensionality of the MNIST
datasets from 784 to 2 using four techniques (from left to right): t-SNE, UMAP, LargeVis, and Trimap

Visualization Program Runtimes
t-SNE UMAP LargeVis Trimap

MNIST Digits Actual 129:40.967 5:06.650 9:35.643 1:39.526
Fashion MNIST Actual 132:09.443 5:42.680 9:57.080 2:08.569
Theoretical Runtime O(N2) O(N1.14) O(smN) O(N)

4.3.1 Runtime and Memory Consumption

To begin, we can see that all tested runtimes correspond with their respective theoretical runtimes, indicated
in the bottom column of Table (1) for each algorithm. This tells us that the experiment ran as expected by the
authors of all algorithms and is an accurate assessment of algorithmic runtime. Assessing the runtimes for all
algorithms on the whole, we can see a general trend that the MNIST Digits dataset has a lower runtime for
embedding than the Fashion MNIST dataset. This also follows our expectations, as the original intent of the
Fashion MNIST dataset is intended and to be a more modern, drop-in replacement for the widely used, but
dated, MNIST Digits dataset.

With the original implementation of t-SNE taking the longest out of all the algorithms, running for more
than 2 hours on both datasets, it does not provide a realistic runtime for datasets of great size. Though the
version of t-SNE used in this experiment was the slowest of all, there are various other implementations of
the algorithm that significantly improve its runtime, such as multi-core Barnes-Hut t-SNE, CUDA t-SNE, and

10https://github.com/eamid/trimap
11https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
12https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html

https://github.com/eamid/trimap
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
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anchored t-SNE, decreasing runtime by up to 700 times (Van Der Maaten, 2014; Chan et al., 2018; Fu et al.,
2019).

The next fastest algorithm for both data sets was LargeVis, with a runtime of approximately 10 minutes.
Though this algorithm did not provide the quickest results, its runtime show that it can scale well to larger
data-sets. Compared to t-SNE, the runtime for LargeVis is around 13 times lower. This is the only major jump
that we see between the algorithms in terms of runtimes, with the remaining algorithms only providing minor
speedups.

UMAP was the second quickest algorithm tested, with its unique approach of applying topology mathematics
to dimensional reduction resulting in a runtime of less than 6 minutes for both data-sets. With this computational
efficiency, UMAP can easily run on datasets over 70,000 data points in a realistic amount of time.

Finally, TriMap was the fastest of all algorithms by a significant margin, with it outperforming all other
algorithms in terms of runtime by at least 2 times and, when compared to t-SNE, up to 60 times. With
runtimes of around 2 minutes on both data-sets and a linear computational complexity, it can certainly scale
far beyond the tested 70,000 member data-sets it was tested on without any trouble.

Table (2) Memory consumption graphs for the two varieties of MNIST datasets, Fashion MNIST and the
MNIST Digits. The values obtained show the memory consumption for reducing the dimensionality of the
datasets from 784 to 2 using four techniques (from left to right): LargeVis, TriMap, UMAP and t-SNE

LargeVis TriMap UMAP t-SNE
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Looking at the memory used for t-SNE, we can see that for both data-sets, the memory usage holds at
around 2 gigabytes for the majority of the runtime, only dropping down to approximately 1.5 gigabytes in the
last fifth of the runtime. With this memory usage, t-SNE has the highest sustained memory consumption of
all algorithms tested, making it less useful in systems with a more limited capacity, or for very large datasets.
Though this is true, it also has the most predictable and stable memory usage, as compared to the other
algorithms, plateauing almost immediately at a quite constant memory usage, until dropping down slightly
towards the end of the test.

For LargeVis, we see a peak memory usage of around 2 gigabytes occurring at the very start of the algorithm.
Memory usage then quickly drops down and normalizes to a consistent value slightly less than 1 gigabyte. With
a constant memory usage for the majority of its runtime, LargeVis is the second most stable algorithm according
to memory usage.

With a peak memory usage over 2 gigabytes, UMAP has the highest peak memory usage out of all algorithms
tested. Furthermore, its memory usage is quite unstable, which several drops in usage paired with a series of
sporadic climbs, only somewhat stabilizing at around half way through its runtime.

Finally, with a peak memory usage of about 1.2 gigabytes, TriMap is not only the quickest, but also the most
memory efficient algorithm, allowing it to scale up to larger datasets without the need for a significantly larger
amount of memory. However, the stability of its memory usage is among the worst of the algorithms tested,
with it being comparable to that of UMAP with its frequent spikes in usage.

4.3.2 Qualitative Comparison

In Table 3, we present the final results of the each embedding algorithm. Comparing the quality of the
embeddings between the datasets, we can see on the whole that the Fashion MNIST dataset is not as well
separated between clusters as the MNIST Digits dataset, which is expected given the higher difficulty of the
Fashion datasets. In terms of each specific algorithm, we can see similar qualities in the embeddings by LargeVis
and UMAP, which tend to separate out the clusters more so than the other algorithms. This lends itself to the
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Table (3) 2D representations of the two varieties of MNIST datasets, Fashion MNIST and the MNIST Digits.
The 2D representations are obtained by reducing the dimensionality of the datasets from 784 to 2 using four
techniques (from left to right): LargeVis, TriMap, UMAP and t-SNE

LargeVis TriMap UMAP t-SNE
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claim of global structure preservation presented by these algorithms. Looking at the results of TriMap, they are
quite distinct from all the other algorithms, with clusters tending to concentrate about a centroid. Finally, we
have t-SNE, which though the oldest of all the algorithms, seems to produce the most consistent results, with
defined and well distributed clusters.

Table (4) Results of quantitative analysis of reduced dimensionality embeddings, focusing on the quality of
certain clusters characteristics, as well as the preservation of neighborhood structure

Visualization Program Quality Measures
t-SNE UMAP LargeVis Trimap

MNIST Digits

Silhouette -0.04781 0.11363 0.05754 -0.01781
Davies-Bouldin 2.92073 2.14496 78.92549 2.34602
Trustworthiness 0.66168 0.71668 0.69962 0.67551
Global Score 0.95202 0.94188 0.93215 0.94389

Fashion MNIST

Silhouette -0.11374 -0.04145 -0.11132 -0.00672
Davies-Bouldin 6.38772 6.22085 11.15644 2.97314
Trustworthiness 0.66047 0.74379 0.66200 0.70229
Global Score 0.80805 0.81065 0.68861 0.83558

4.3.3 Quantitative Comparison

To conduct a quantitative comparison of the final visualizations shown in Table 3, we will use the Davies-
Bouldin and Silhouette scores as an assessment of clustering quality, and the Trustworthiness and Global Score
metrics, as implemented in by the Trimap Python package(Amid and Warmuth, 2019). Of important note is
the fact that the Davies-Bouldin and Silhouette scores do not assess whether or not the retrieval of information
from the clusters is accurate, but rather, the inherent qualities of the clusters as they are in each embedding.
We present these quantitative results in Table 4.

Beginning with the results of our clustering analysis, we were able to find quite consistent results between
datasets. For the older MNIST Digits dataset, UMAP provided the best scores for both the Silhouette and
Davies-Bouldin metrics, outperforming the other algorithms by a fair margin. For the newer Fashion MNIST
Digits dataset, Trimap provided the best scores for both the Silhouette and Davies-Bouldin metrics, with other
algorithms performing similarly by the Silhouette score, but much worse by the Davies-Bouldin index.

Highlighting the results of neighborhood structure preservation, we found that, for both datasets, UMAP was
the most adept and maintaining the local structure of our datasets, as evidenced by its maximal Trustworthiness
scores. However, in terms of the preservation of global structure, we saw superior performance from Trimap on
the more challenging Fashion MNIST dataset, while for the older MNIST Digits dataset, global scores were all
within 2 percentage points of one another, with t-SNE edging out Trimap just barely.
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Table (5) Runtimes (seconds) of different graph visualization methods for different graphs shown in Table 6.
BL - BatchLayout, BLBH - Barnes-Hut based BatchLayoout, FA2BH - Barnes-Hut based ForceAtlas2, OO -
OpenOrd.

Graphs #Vertices BL BLBH FA2BH OO tsNET
grid2 dual 3,136 3.31 4.21 6.30 5.90 632.92
3elt dual 9,000 16.67 9.25 19.40 16.50 3,396.66

tube2 21,498 81.23 35.17 60.27 43.69 32,162.03
finance256 37,376 234.66 47.57 81.54 69.19 163,532.71

Theoretical Runtime O(n2) O(n logn) O(n logn) O(n2) O(n2)

4.4 Comparison of Graph Visualization Tools

4.4.1 Runtime and Memory Consumption

With the emergence of bigdata, large-scale graph drawing has become an important aspect. To big graphs
having the number of vertices more than one million, there exist several methods in the literature. Gephi has
ForceAtlas2 model which can utilize the available cores in machine. OpenOrd also runs in parallel. Recently,
BatchLayout method has been proposed in the literature to effectively utilize cache memory and speedup force
computation in shared memory architecture. On the other hand, tsNET generates good quality layout but
runs sequentially. Thus, it can not generate layouts for large graphs. We report the runtime of four methods
in Table 5 along with their theoretical complexity. We observe that one version of BatchLayout always runs
faster than other methods. For a graph having 9,000 vertices, tsNET takes around an hour to generate a
layout whereas BatchLayout Barnes-Hut (BLBH) version can generate good quality layout within 10 seconds.
For finance256 graph, tsNET took almost 2 days to generate a layout whereas BLBH can generate a readable
layout within a minute. BatchLayout and OpenOrd consume less memory than Gephi’s ForceAtlas2 and tsNET.
BatchLayout uses compressed sparse row (CSR) representation of graph structure which significantly reduces the
memory consumption cost for scale-free networks. On the other hand, Gephi’s GML format consumes significant
memory due to storing different node-link related information. Specifically, for grid2 dual graph, BatchLayout,
OpenOrd, ForceAtlas2, and tsNET consume 2.6MB, 17MB, 632MB, and 710MB, respectively. Thus, for low
memory consumption and runtime, BatchLayout is a probable choice to generate graph layouts.

Table (6) 2D layouts of four representative graphs with each graph shown in a row of the table. 2D layouts
are obtained by embedding graphs directly on 2D space using five techniques (from left to right): BatchLayout,
BatchLayoutBH, ForceAtlas2BH, OpenOrd and tsNET. BatchLayoutBH - Barnes-Hut approach of BatchLay-
out, ForceAtlas2BH - Barnes-Hut approach of ForceAtlas2.
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4.4.2 Qualitative Comparison

We show the quality of the generated layouts by different tools in Table 6. We observe that the layouts generated
by tsNET is the most readable than others. The quality of layouts generated by BatchLayout are close to tsNET.
Note that BatchLayout generates these layouts within a very short time compared to tsNET. The layouts of
other methods are also comparable. Different people may have different perception for visual quality. Thus, in
the next section, we also analyze the generated layouts using quantitative measures.

Table (7) Edge crossing and edge uniformity measures of different graph visualization methods for two repre-
sentative graphs shown in Table 6. A lower value is better for both edge crossing and edge uniformity measures.
BL - BatchLayout, BLBH - Barnes-Hut based BatchLayoout, FA2BH - Barnes-Hut based ForceAtlas2, OO -
OpenOrd.

Graphs
Edge Crossing↓ Edge Uniformity↓

BL BLBH FA2BH OO tsNET BL BLBH FA2 OO tsNET
grid2 dual 1,043 515 596 2,549 0 0.40 0.35 0.58 0.55 0.26
3elt dual 2,400 3,851 5,385 7,354 692 0.41 0.42 0.64 0.53 0.62

Table (8) Stress and Neighborhood preservation measures of different graph visualization methods for two
representative graphs shown in Table 6. A lower value is better for stress measure whereas a higher value is
better for Neighborhood preservation measure. BL - BatchLayout, BLBH - Barnes-Hut based BatchLayoout,
FA2BH - Barnes-Hut based ForceAtlas2, OO - OpenOrd.

Graphs
Stress↓ Neighborhood Preservation↑

BL BLBH FA2 OO tsNET BL BLBH FA2 OO tsNET
grid2 dual 4.1E+5 2.4E+5 4.3E+5 4.5E+5 1.4E+5 0.50 0.60 0.53 0.43 0.73
3elt dual 3.7E+6 6.1E+6 6.6E+6 7.5E+6 3.1E+6 0.55 0.51 0.37 0.36 0.64

4.4.3 Quantitative Comparison

To assess the quantitative measure of visualization shown in Table 6, we choose grid2 dual and 3elt dual graphs.
We use four graph visualization measures (De Luca et al., 2019; Rahman et al., 2020a), namely, (i) the number
of edge crossing, (ii) edge length uniformity, (iii) stress, and (iv) neighborhood preservation. A lower value
means a better results for edge crossing, edge length uniformity and stress measures. On the other hand, a
higher value means a better result for neighborhood preservation measure. All these measures are widely used
in the literature to assess the layouts quantitatively. We report the results in Tables 7 and 8. We observe that
tsNET wins in edge crossing, stress and neighborhood measures. One version of BatchLayout always shows
runnerup results. For edge uniformity measure, BatchLayout shows competitive results. BatchLayout shows
this competitive performance with a very low runtime compared to tsNET.

5 Discussions

Taking into account all of the data and analysis, we can see that all of the algorithms tested have certain
strengths and weaknesses. With this, we can find a use case for all of the algorithms.

High-dimensional Vector Data. With the focus on solving the crowding-out problem, t-SNE is the best
choice for reducing data-sets where a more uniformly distributed embedding is desired. Furthermore, with the
most stable memory usage among algorithms, it is well applied to use cases where predictable memory usage is
favorable. However, we recommend that the original serial version of t-SNE is not used, as it fails to scale to large
data-sets, with its high memory consumption and high computational complexity. Therefore it is recommended
that if it is used, that one of its more optimized versions be used. Being based upon t-SNE with the same KNN
tree construction, LargeVis shares with it certain characteristics, such as it shows more stable memory usage.
However, LargeVis is significantly less computationally complex than t-SNE, allowing it to scale to data-sets
with greater data points. With the focus of LargeVis being to improve runtime as compared to t-SNE, it certainly
delivers. Therefore, we believe that LargeVis should be used for applications where stable memory usage, high
scalablity, and the preservation of the data’s local structure are desired. Moving on to UMAP, we are given
faster runtime than both t-SNE and LargeVis, but at the cost of less stable memory usage. Providing similar
embedding quality as compare to LargeVis, UMAP should be used as an alternative for LargeVis use cases when
the stability of memory is not a factor, as it provides similar results in nearly half the time. Finally, we are left
with the fastest and most memory efficient of all algorithms tested, that being TriMap. With its significantly
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lower runtimes and memory usage TriMap certainly outclasses all other tested algorithms in all tests. However,
TriMap is somewhat limited by its design specifications, as it is primarily geared towards maintaining the global
structure of data, rather than local structure. With relatively unstable memory usage, the predictability of
TriMap is less than that of algorithms like LargeVis and t-SNE. Therefore, we believe that the best use cases
for TriMap are whenever maintaining the global structure of data is the goal or the size of the data-set is too
great for any other algorithm to realistically process.

Graph Data. For graph data visualization, tsNET methods take a long time to generate a layout of a
medium-scale graph and it also consumes a high amount of memory. Nevertheless, the layouts generated by
tsNET are of good quality. If users have enough time and memory, then tsNET can be used to generate a
good quality layout. OpenOrd is a high-performance graph visualization tool that can be run on a distributed
system to generate the layout of a big graph. Thus, when we need to generate graph layout quickly, we can use
OpenOrd though the quality may not be good. ForceAtlas2 is integrated with Gephi software which is user-
friendly and scientists/researchers from other research domains can also use ForceAtlas2 without coding skill.
Due to maintaining the structure of the Gephi framework, this method consumes a high amount of memory
which reduces its usability on a large graph. Finally, the BatchLayout method generates good quality layout
very quickly compared to other methods. It can also generate layouts within a reasonable time for graphs
having millions of vertices. Thus, users can also consider using BatchLayout which simultaneously produces
good quality layouts within a short time consuming less memory.

6 Conclusion and Future Work

Data visualization provides an important insight about the high-dimensional data in low-dimensional space. This
is a precursor for data-mining and information retrieval. In this survey paper, we analyzed several state-of-the-
art visualization techniques. To compare the results, we mainly focused on runtime, memory consumption and
visual quality using benchmark datasets. From our analysis, we can recommend users to chose a visualization
method for a given set of computing resources.

With the breadth and extensibility of established algorithms such as t-SNE and UMAP, the results for
outputs can vary greatly based on the tuning modifications, making it a component worth investigating further.
The quality of graph layouts can also vary based on the selection of different hyper-parameters where users
should be careful and follow the guidelines of parameter sensitivity in the papers. Finally, an extension of
our analysis to include modified implementations of algorithms already discussed, such as those of t-SNE and
BatchLayout, may provide more depth to the strength of using more established algorithms.
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